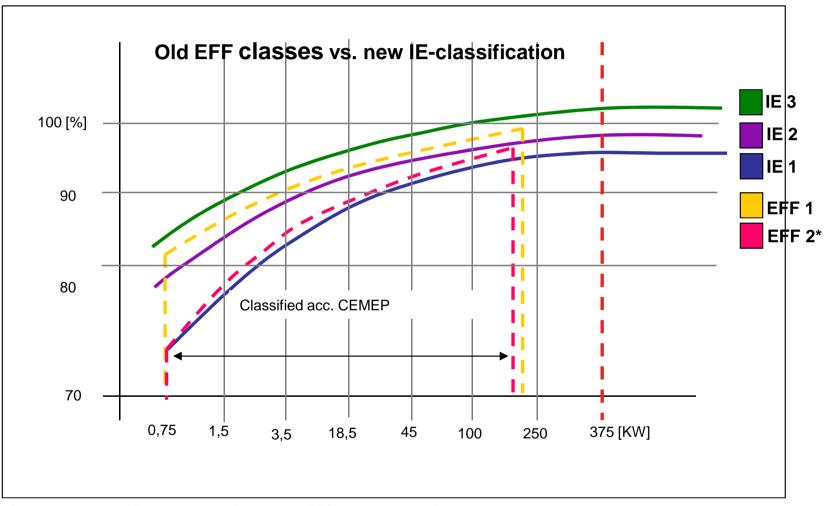


- 1. General
- 2. Insulation Classes
- 3. Nameplate Rating vs. Real Performance
- 4. Motor Power Cable
- 5. Motor Bearings
- 6. Space Heater
- 7. Sensors

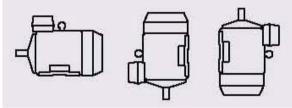
General



General

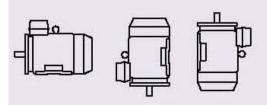
Efficiency classes:

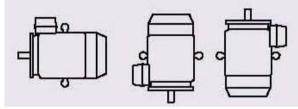
Source: International Electrotechnical Commission (IEC) and motor suppliers data. *The efficiency of the new IE classes is slightly lower than those of EFF because P_{LL} losses have to be individual measured, instead of global deduction of 0,5% within EFF. General



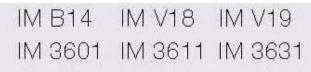
International mounting (IM) arrangements

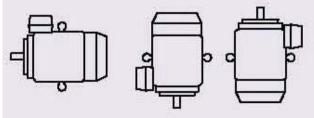
 \rightarrow common codes:


foot mounted

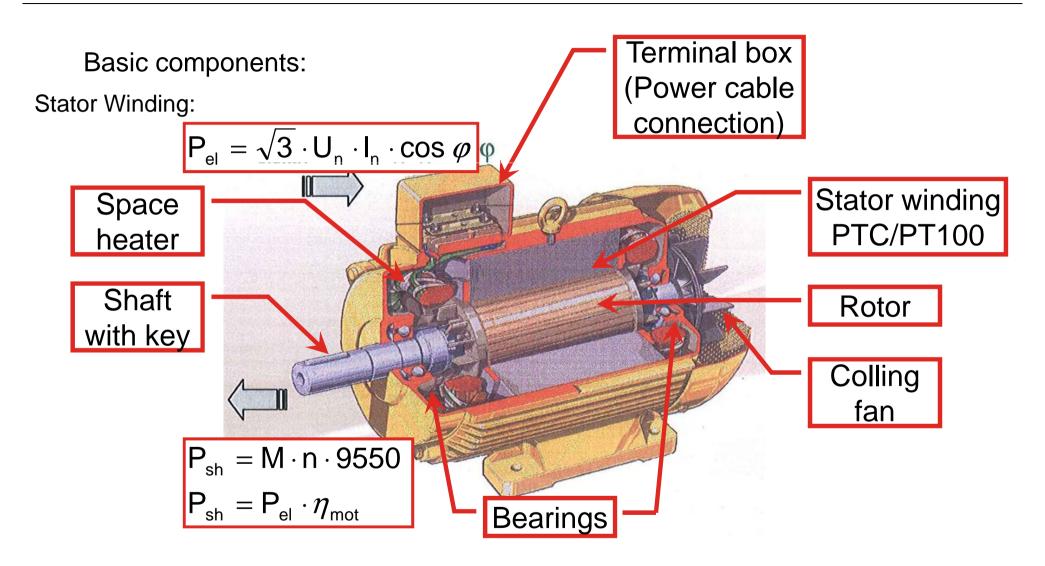

foot- flange mounted

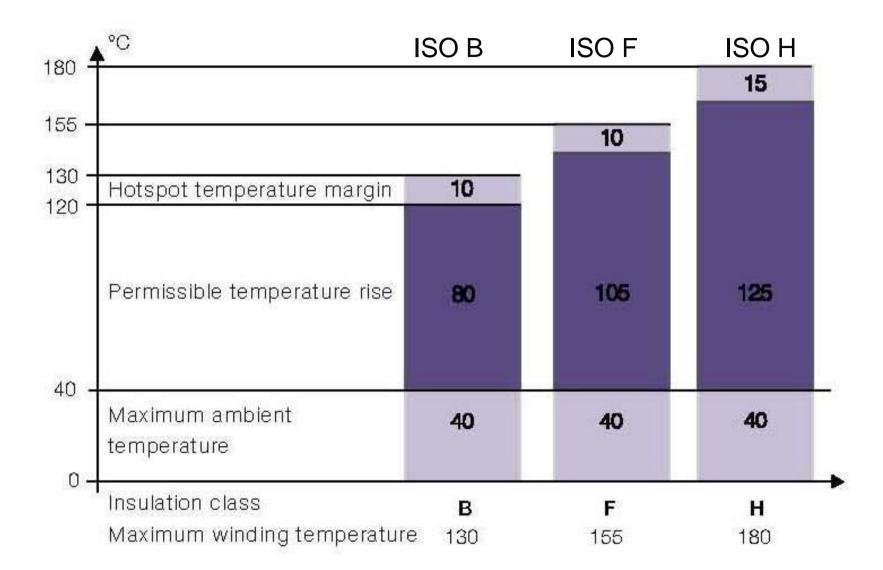
M B35 IM V15 IM V36 IM 2001 IM 2011 IM 2031

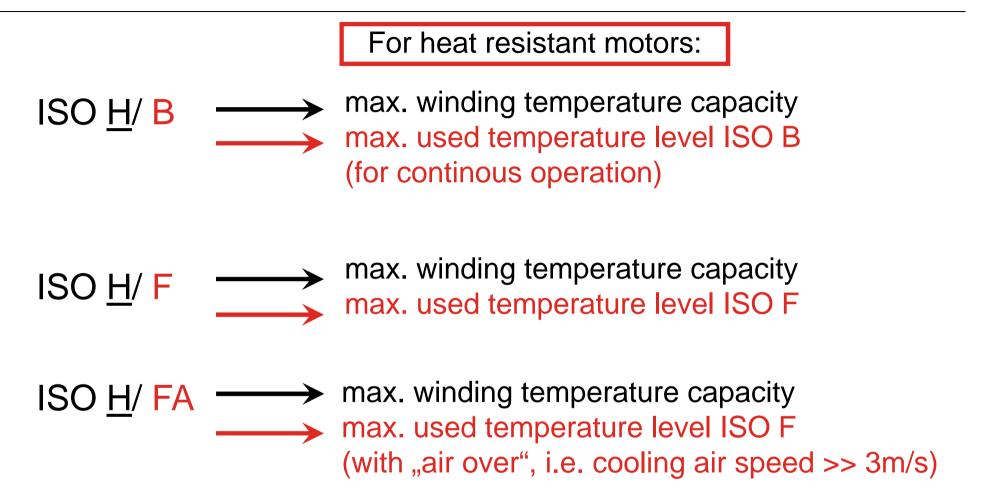



flange mounted (large)

flange mounted (small)




- 1. General
- 2. Insulation Classes
- 3. Nameplate Rating vs. Real Performance
- 4. Motor Power Cable
- 5. Motor Bearings
- 6. Space Heater
- 7. Sensors



Insulation Classes

- 1. General
- 2. Insulation Classes

3. Nameplate Rating vs. Real Performance

- 4. Motor Power Cable
- 5. Motor Bearings
- 6. Space Heater

7. Sensors

Nameplate Rating:

- rated voltage
- rated current
- rated frequency
- rated speed
- rated shaft power (mech.)
- power factor
- efficiency class
- insulation class
- protection class

Motor sizes 280 to 450 Rating plate

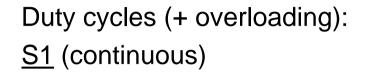
			2009				4
4500678	3913-10	S		GF091:	23456		
				Ins.cl.	F	IP	55
V	Hz	kW	r/min	A	cosΨ	L	Duty
690 Y	50	160	1487	165	0.85	S1	-
400 D	50	160	1487	284	0,85	S1	
415 D	50	160	1488	277	0.84	S1	
IE2 - 95 Prod. co					0%)		
					max 2	200	1. 1

Nameplate data valid for rated conditions (as per IEC 600 34-1):

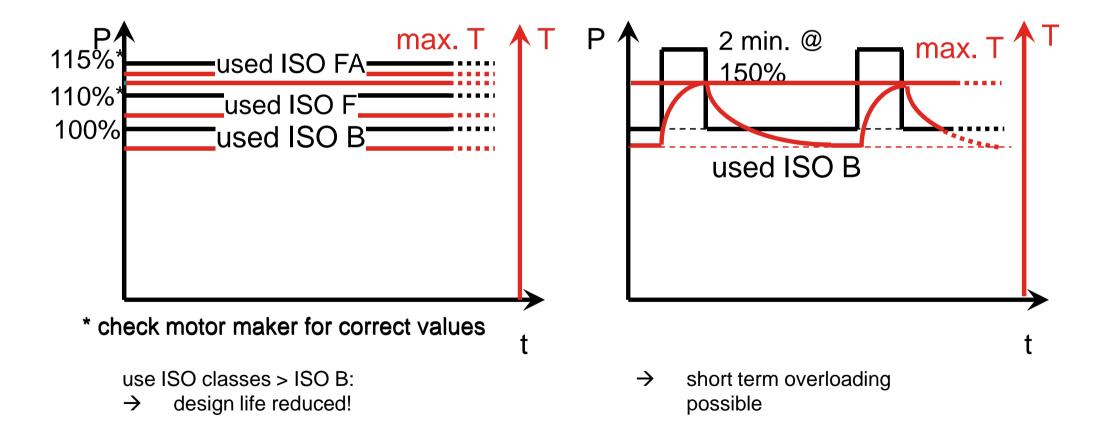
- Installation height_{max} = 1000m a.s.l.
- Air cooling temperature_{max} = 40°C
- Duty cycle: S1 (continuous)
- Insulation class used
- Rated values at full load
- Air cooling air speed ~ 3^m/_s

→ ANY CHANGE of these conditions will change rated nameplate data!

Rating factors for motor power:


Altitude above sea level ASL	Coolan	Coolant temperature in °C										
in m	<30	30 - 40	45	50	55	60						
1000	1.07	1.00	0.96	0.92	0.87	0.82						
1500	1.04	0.97	0,93	0.89	0.84	0.79						
2000	1.00	0.94	0.90	0.86	0.82	0.77						
2500	0.96	0.90	0,86	0.83	0.78	0.74						
3000	0.92	0.86	0.82	0.79	0.75	0.70						
3500	0.88	0.82	0.79	0.75	0.71	0.67						
4000	0.82	0.77	0.74	0.71	0.67	0.63						

$$P_{\text{shaft,actual}} = P_{\text{shaft,rated}} \cdot f_{\text{DG}}$$


$$P_{\text{shaft,55^{\circ}C,2000m}} = P_{\text{shaft,rated}} \cdot 0.82$$

$$F_{\text{DG}} = \text{Degradation factor}$$

other (e.g. overload)

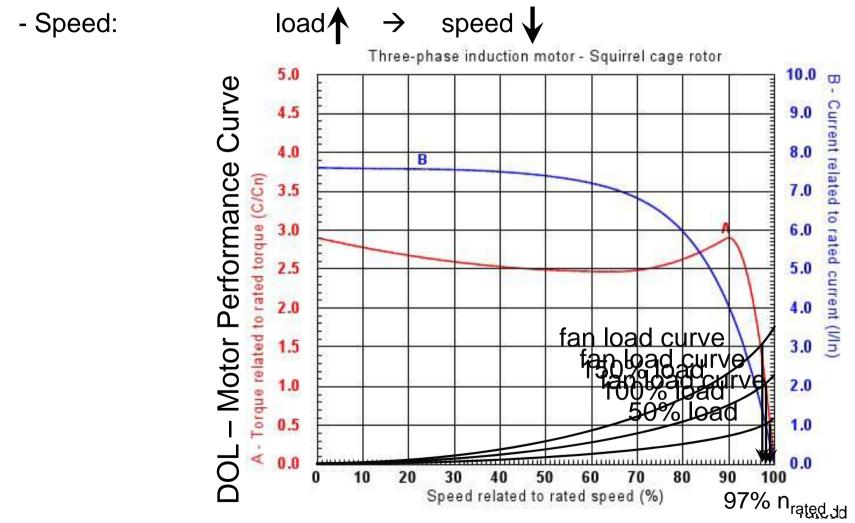
Rated Values vs. Real Values:

- Current

$$\mathbf{I}_{\text{actual}} = \mathbf{I}_{\text{rated}} \cdot \frac{\mathbf{U}_{\text{rated}}}{\mathbf{U}_{\text{actual}}} \cdot \frac{\mathbf{COS} \ \varphi_{\text{actual, starting method}}}{\mathbf{COS} \ \varphi_{\text{rated, DOL}}}$$

NOTE:

Actual power factor depends on


- starting method, i.e VSD operation $\rightarrow \cos \varphi_{\text{VSD}} < \cos \varphi_{\text{DOL}}$
- ratio of actual load to rated load (partial load) \rightarrow

Rated Values vs. Real Values:												
- Efficie	ncy		full	over	- Powe	er Fa	ctor	full	over			
← ^P	oartia	load	load	load →	←	oartia	al load	load	load →			
Part-load e	fficiency	/ % at			Part-load p	ower fac	tor at	- <u>-</u>				
1/4 of full load	1/2	3/4	4/4	5/1	1/4	/2	3/4	4/4	5/4			
93 92 90	96 95 93.5	97 96 95	97 96 95	96 <mark>-5</mark> 95-5 94-5	0.35 0.33	0.80 0.85 0.83	0.90 0.89 0.88	0.92 0.91 0.90	0.92 0.91 0.90			
19 17	92.5 91.5	94 92	94 94 92	93.5 91.5	0.53	0.80 0.80 0.76	0.86 0.86 0.84	0.39 0.87	0.89 0.87			
86 85 84	90 89 88	91 90 89	91 90 89	90 89 88	0.51 0.49 0.47	0.75 0.73 0.71	0.83 0.81 0.80	0.86 0.85 0.84	0.86 0.86 0.85			
80 79 78	87 86 85	88 87 86	88 87 86	87 86 85	0.45 0.43 0.41	0.69 0.67 0.66	0.79 0.77 0.76	0.83 0.82 0.81	0.84 0.83 0.82			
76 74 72	84 83 82	85 84 83	85 84 83	83.5 82.5 81.5	0.40 0.38 0.36	0.65 0.63 0.61	0.75 0.74 0.72	0.80 0.79 0.78	0.81 0.80 0.80			
70 68 66	81 80 79	82 81 80	82 81 80	80.5 79.5 78.5	0.34 0.32 0.30	0.59 0.58 0.56	0.71 0.70 0.69	0.77 0.76 0.75	0.79 0.78 0.78			

WITT& SOHN

Rated Values vs. Real Values:

- 1. General
- 2. Insulation Classes
- 3. Nameplate Rating vs. Real Performance

4. Motor Power Cable

- 5. Motor Bearings
- 6. Space Heater
- 7. Sensors

Heat-resistant Motor Cables - Selection:

- shielded (EMC)
- flameretardant (IEC 332-1/ 332-2)
- halogen free (IEC 60754-2)
- no fire propagation (IEC 60332-3)
- water-tight (protect versus electric shock!)
- DOL: 3 (phase) +1 (PE) lead
 Y-∆: 6 (phase) +1 (PE) lead
 → bundled by an outer shield!
- heat resistant acc. to requirement \rightarrow

Heat-resistant Motor Cables – Samples:

Certification for 250°C/2h:

LAPP

 Certification for 400°C/2h: HELU

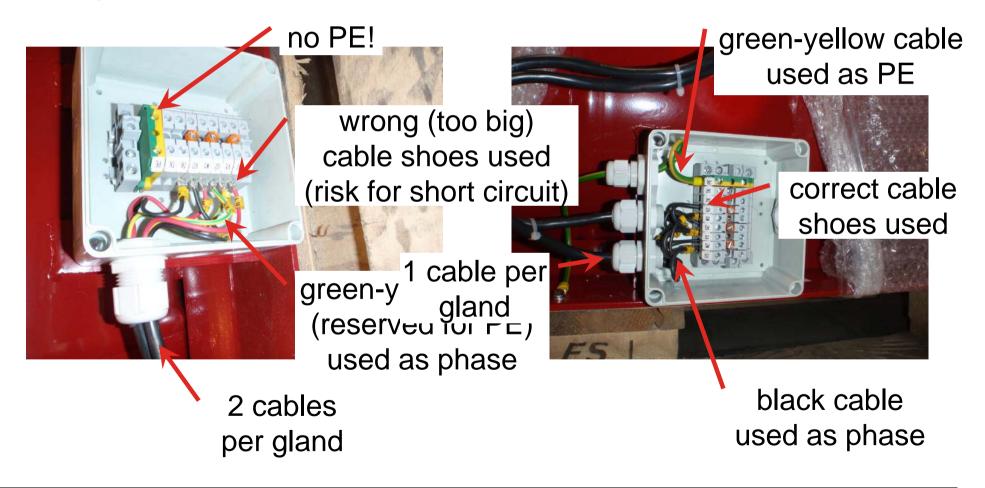
Heat-resistant Motor Cables – Bad Samples:

- Outer shield impregnated fibre braiding:
 Omerin
 Silicable vs
 Single leads with metall tube might fail:
- during fire case
- fan operating
- outer sheath might get porous and disapears
- → Risk of short circuit!

WITT& SOHN IGW Ventilatoren

Heat-resistant Motor Cables:

- select correct cable cross section for rated current
- consider parallel cables for big cable cross sections

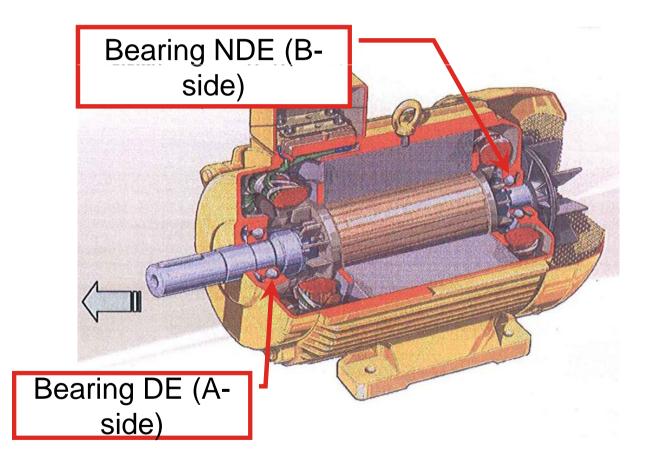

 apply reduction factors for those cables-sections located in elevated temperature areas

Cable Connection to Terminal Box:

- wrong

- correct

- 1. General
- 2. Insulation Classes
- 3. Nameplate Rating vs. Real Performance
- 4. Motor Power Cable


5. Motor Bearings

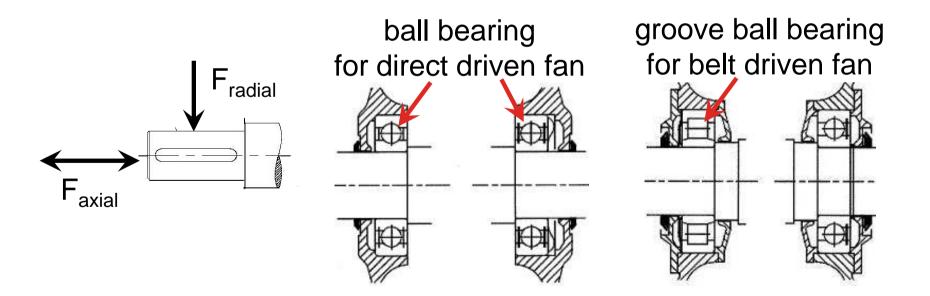
6. Space Heater

7. Sensors

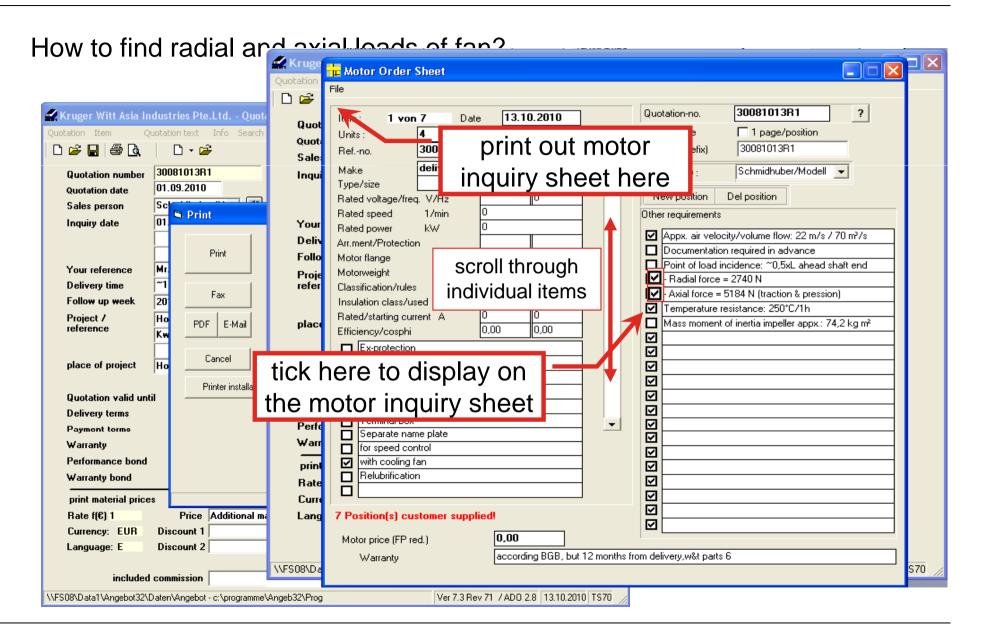
Basic components:

Lh₅₀:

Bearing Life Time acc. to ISO 281


- Lh₁₀: 10% of bearings allowed to fail in given time
 - 50% of bearings allowed to fail in given time
 - "average"

-
$$Lh_{50} \sim 5x Lh_{10}$$


Selection of Bearings

- 1. Self
 - check permissible loads
 - check fan actual loads
- 2. send motor inquiry sheet to motor makers

Bearing Lubrification

Motor Grease/ Lubricant

 \rightarrow soap grid emulsified with oil + special additives

- 1. Life lubricated bearings
 - \rightarrow available only for smaller motors
 - → BEST solution: the less someone must interfere the less can go wrong

WITT& SOHN

Bearing Lubrification

- 2. Regrease bearings through grease nipples
 - → Iubrification lines to external fan casing for comfort of maintenance
 - \rightarrow use always SAME grease!
 - → follow STRICTLY relubrication intervals!
 (depends on load + load cycle)

Read carefully the O&M manual of motor maker!

Consequences for wrong greasing:

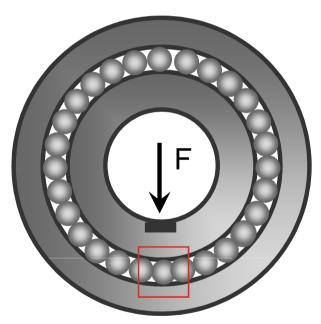
Failure	Consequence 1	Consequence 2			
Mixture of grease types	Chemical reaction of grease types	Grease and bearings destroyed			
Too low amount	Bearings run dry	Bearings destroyed			
Too high amount	Grease inside motor/ oil is "bleeding out" of soap grid	Grease, bearings and motor destroyed			

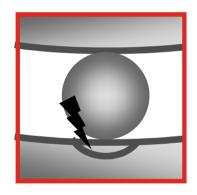
Consequences for wrong greasing:

→ High temperature grease
 Good performance at high temperature only

BUT fire once in life (<1%)

- \rightarrow balanced time: normal temperature (>99%)
 - \rightarrow high viscosity
 - \rightarrow low grease performance
 - \rightarrow high screaming noise
 - \rightarrow bearings likely to be destroyed

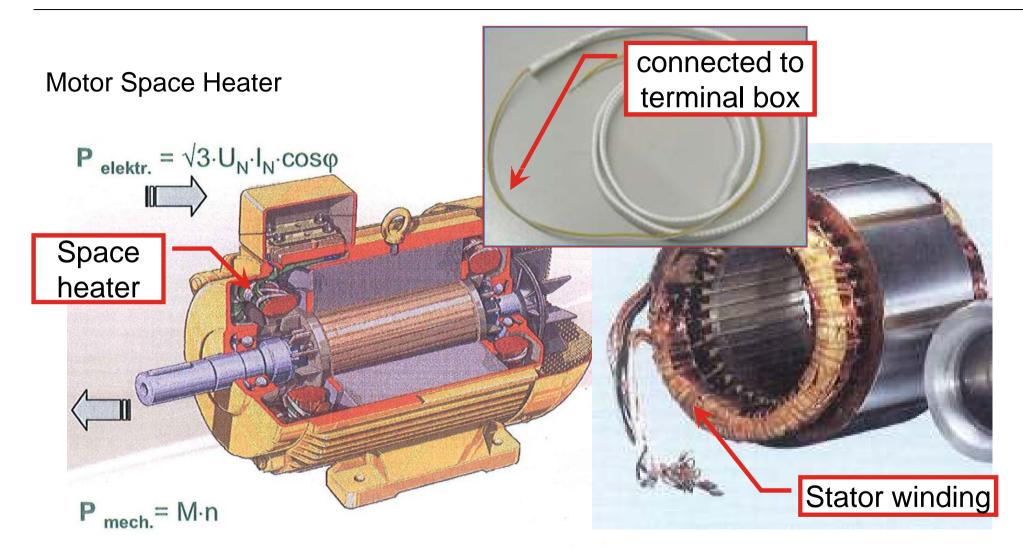

Recommendation:


→ use grease for normal temperature with adequate performance for short term heat application

Consequences for wrong operation:

 \rightarrow Long time of standstill

plastic deformation
of bearing ring
at point of contact
→ bearing destroyed


Pls. check O&M manual Chapter 6 * Instruction for storage and prolonged downtime

- 1. General
- 2. Insulation Classes
- 3. Nameplate Rating vs. Real Performance
- 4. Motor Power Cable
- 5. Motor Bearings
- 6. Space Heater
- 7. Sensors

Space Heater = Anti-Condensation Heater

Purpose:

 \rightarrow Shall keep temperature inside of motor few degree K higher than outside

Operation:

- \rightarrow To be switched on when motor stops
- \rightarrow To be switched off when motor starts

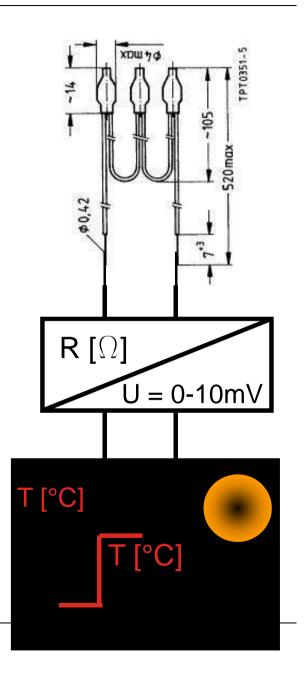
Usage:

- → Ambient conditions with high fluctuation of temperature (e.g. day/ night)
- \rightarrow Low ambient temperatures (< 0°C)

- 1. General
- 2. Insulation Classes
- 3. Nameplate Rating vs. Real Performance
- 4. Motor Power Cable
- 5. Motor Bearings
- 6. Space Heater

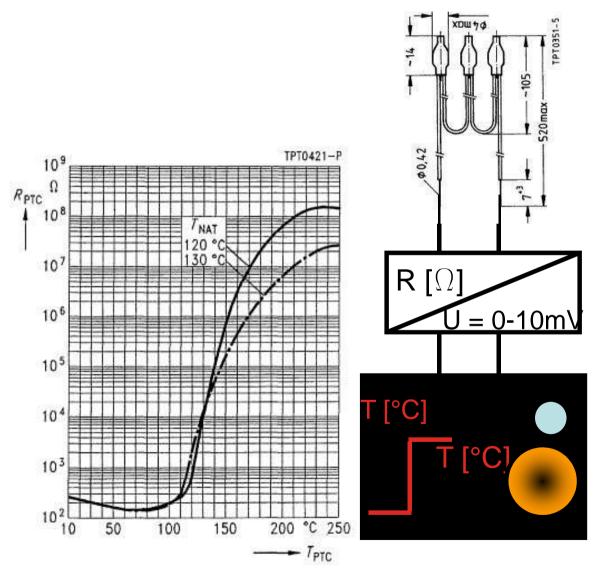
7. Sensors

Motor Sensors:

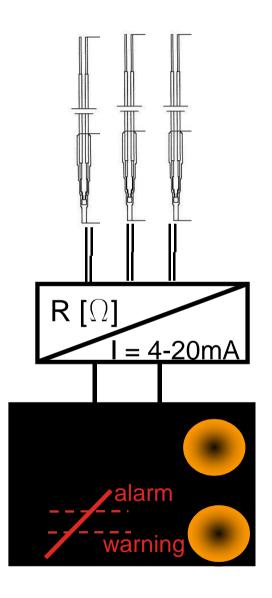

Temperature:

- 1. **PositiveTemperatureCoefficient (PTC)**
- 2. Pt100
- \rightarrow Locations:
 - winding
 - bearing

PositiveTemperatureCoefficient

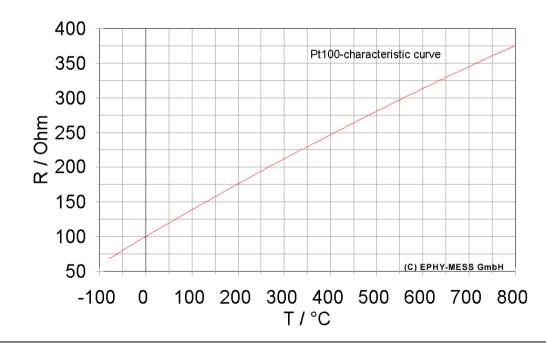

- \rightarrow cheap
- → triggers at a preset selected temperature
- installed in series into the windings
 3 for shut off
 - or 2 x 3 for warning and shut off
- → characteristic: signal: $\Omega \rightarrow mV$

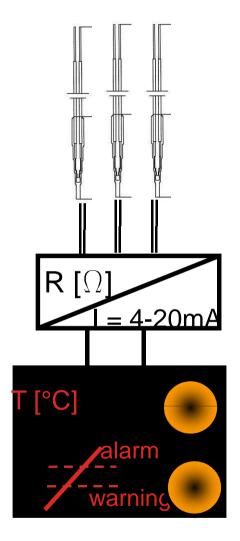
- → cheap
- → triggers at a preset selected temperature
- installed in series into the windings
 3 for shut off
 - or 2 x 3 for warning and shut off
- → characteristic: signal: $\Omega \rightarrow mV$



Pt100

- If temperature measurement is acquired (expensive solution (platinum))
- \rightarrow provides continuous rising signal (0°C \rightarrow 100 Ω)
- \rightarrow installed parallel into the windings
- → characteristic: signal: Ω → mA



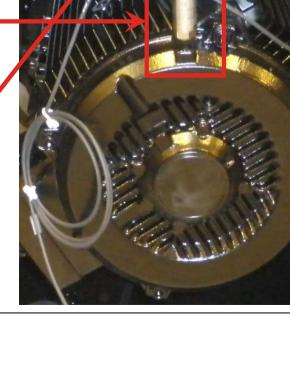


Pt100

- → If temperature measurement is acquired (expensive solution (platinum))
- → provides continuous rising signal (0°C → 100 Ω)
- \rightarrow installed parallel into the windings
- → characteristic: signal:Ω → mA

Motor Sensors:

Vibration:



- wear&tear status
 - → e.g. from SPM,
 but expensive + complex

Witt&Sohn AG Oct-14

- vibration signal: mA
- \rightarrow Location:
 - motor bearings

space allowance in motor support for sensor on DE side!

- Old efficiency classes such as eff1/eff2 have been replaced by IE1/IE2
- There are different kind of insulation classes.
- General motor ratings are based on 1000m a.s.l, 40°C ambient temperature, S1 duty cycle and insulation class used
- Motor rated data have to be downgraded for higher altitudes and higer ambient temperatures
- Motor efficiency and power factor decrease if motor is running at different speeds
- Special cables have to be used for heat resistant application
- Bearing life is calculated acc. to ISO281
- Correct grease has to used for regreasable bearings (acc. to manufacturers O&M manual)
- Fans being at standstill for a long time should be avoided.
- Optional parts for motors: PT100, PTC, Anti-condensation heaters

Motor Power Cable

Cable size and costs

100%	E90-c	ab	le (fire	rated, 1	0m i	n fire	zone) =:	> e.g	for a	xial fans						
power	current		50	m	200 m			300 m			400 m			800 m		
[kW]	[A]		4x²	€/50m		4x²	€/200m		4x²	€/300m		4x²	€/ 4 0m	4	4x²	€/800m
7,5	20	1 :	x 10	490	1 x	16	2.630	1 x	25	5.470	1 x	25	7.290	1 x	25	14.600
15	34	1 :	x 16	660	1 x	25	3.640	1 x	35	6.080	1 x	35	8.110	1 x	35	16.200
22	40,5	1 :	x 16	660	1 x	25	3.640	1 x	35	6.080	1 x	50	9.090	1 x	50	18.200
30	55	1 :	x 25	910	1 x	35	4.060	1 x	50	6.820	1 x	70	10.900	1 x	70	21.800
45	81	1 :	x 50	1.140	1 x	50	4.550	1 x	70	8.170	1 x	95	14.400	1 x	95	28.900
75	135	1 :	x 95	1.800	1 x	95	7.210	1 x	120	13.000	1 x	150	20.300	1 x	150	40.600
110	195	1 :	x 120	2.170	1 x	120	8.660	1 x	185	19.600	1 x	240	32.700	1 x	240	65.300
160	287	2 :	x 95	3.610	2 x	120	17.300	2 x	120	26.000	2 x	150	40.600	2 x	150	81.300
250	442	3	x 95	5.410	3 x	95	21.600	3 x	120	39.000	3 x	150	61.000	3 x	150	hä ?
315	550	3 :	x 120	6.500	3 x	120	26.000	3 x	150	45.700	3 x	185	78.300	3 x	185	hä ?

90% NYCWY-cable (70°C, under road level) +

10% E90-cable (fire rated, 10% in tunnel fire zone) => e.g. for jet fans

											1						
power	current		100	m		200	m		300	m		400	m	800 m			
[kW]	[A]		4x²	€/100m		4x²	€/200m		4x²	€/300m		4x²	€ 400m		4x²	€/800m	
7,5	20	1 x	10	300	1 x	10	610	1 x	16	1.130	1 x	25	2.200	1 x	25	4.390	
15	34	1 x	16	380	1 x	16	750	1 x	25	1.650	1 x	35	2.590	1 x	35	5.190	
22	41	1 x	16	380	1 x	25	1.100	1 x	35	1.950	1 x	50	2.950	1 x	50	5.900	
30	55	1 x	25	550	1 x	35	1.300	1 x	50	2.210	1 x	70	4.110	1 x	70	8.220	
45	81	1 x	70	1.030	1 x	70	2.050	1 x	70	3.080	1 x	95	4.770	1 x	95	9.540	
75	135	1 x	120	1.420	1 x	120	2.850	1 x	120	4.270	1 x	150	6.750	1 x	150	13.500	
110	195	1 x	150	1.690	1 x	150	3.380	1 x	185	6.400	1 x	185	8.530	1 x	185	17.100	
160	287	2 x	120	2.850	2 x	120	5.690	2 x	120	8.540	2 x	150	13.500	2 x	150	27.000	
250	442	3 x	120	4.270	3 x	120	8.540	3 x	120	12.800	3 x	150	20.300	3 x	150	40.500	
315	550	3 x	150	5.060	3 x	150	10.100	3 x	150	15.200	3 x	185	25.600	3 x	185	51.200	

